# Impact of Reducing Food Loss and Waste: Lessons and Future Direction

APEC Expert Consultation 2016

 Martine Rutten, Monika Verma, Linda de Vreede, Thom Achterbosch

- July 18, 2016









# Structure

- 1. How did we get involved in the modelling of FLW reductions?
- 2. Data?
- 3. Type of modelling?
- 4. Initial findings?
- 5. Directions of research?
- 6. Importance of work and resources/data needs in future?



## How did we get involved <-> Why are FLW problematic?



## Economic perspective $\rightarrow$ we cannot afford it



## Food security / hunger perspective $\rightarrow$ morally unacceptable



WAGENINGEN UR

ΕI

Climate perspective  $\rightarrow$  careful with scarce resources

# Academic contributions

Rutten Agriculture & Food Security 2013, 2:13 http://www.agricultureandfoodsecurity.com/content/2/1/13

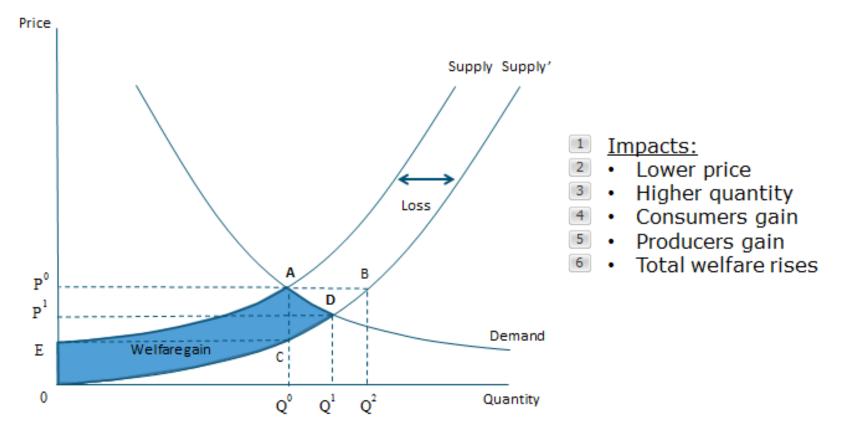


## RESEARCH

**Open Access** 

# What economic theory tells us about the impacts of reducing food losses and/or waste: implications for research, policy and practice

Martine M Rutten


Forthcoming: study on impacts of tackling agricultural food loss in MENA:

African Journal of Agricultural and Resource Economics (AfJARE)



# Economic framework to analyse impacts

### **Reducing food loss in supply**



Source: Rutten, M. (2013), Agriculture & Food Security 2:13

#### Actual impact: A $\rightarrow$ D $\leftrightarrow$ Q0 $\rightarrow$ Q1 due to fall in prices

# Factors of influence

- Demand and supply curves
- Extent of FLW (already small... Small shifts) & extent of avoidability
- Costs of measures to reduce FLW
- Feedback effects: scale of production and food prices : `Ceteris Paribus' (all else remains the same): lower food price may induce:
  - => Higher FLW
  - => Demand elsewhere: biofuels, meat...

Where do FLW occur in the supply chain? (where to focus)

# Applied studies at LEI - Method

- Global economic simulation model: MAGNET
- Scenarios: "what if we were to reduce food losses and/or waste by x %?"
- Food loss reductions as productivity shocks (technical change)
- Food waste reductions as taste shocks (less waste => less food demand, savings spent on (other) goods and services so as to remain on budget)
- Impacts: wide variety of socio-economic indicators: production, inter-sectoral links, dietary composition, land-use, food prices, trade.
- Data: mostly FAO (2011), or country level data
- Case studies: MENA, EU, Ghana, SSA



# Data

# FAO (2011): global FLW percentages by region

Estimated/assumed waste percentages for each commodity group in each step of the FSC for **Europe incl.** Russia.

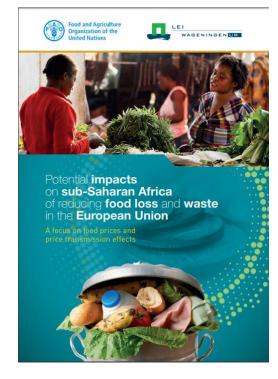
|                       | Agricultural production | Postharvest<br>handling and<br>storage | Processing and<br>packaging | Distribution:<br>Supermarket<br>Retail | Consumption |
|-----------------------|-------------------------|----------------------------------------|-----------------------------|----------------------------------------|-------------|
| Cereals               | 2%                      | 4%                                     | 0.5%, 10%                   | 2%                                     | 25%         |
| Roots and tubers      | 20%                     | 9%                                     | 15%                         | 7%                                     | 17%         |
| Oilseeds and pulses   | 10%                     | 1%                                     | 5%                          | 1%                                     | 4%          |
| Fruits and vegetables | 20%                     | 5%                                     | 2%                          | 10%                                    | 19%         |
| Meat                  | 3.1%                    | 0.7%                                   | 5%                          | 4%                                     | 11%         |
| Fish and seafood      | 9.4%                    | 0.5%                                   | 6%                          | 9%                                     | 11%         |
| Milk                  | 3.5%                    | 0.5%                                   | 1.2%                        | 0.5%                                   | 7%          |

**Food loss:** the decrease in edible food mass throughout the part of the supply chain that specifically leads to edible food for human consumption and takes place at the production, post-harvest and processing stages.

**Food waste:** food loss occurring at the end of the FSC in the retail and final consumption stages (Parfitt, Barthel and Macnaughton, 2010).



# **Case Studies**


## 



## 



## 





# Reducing EU household & retail food waste by 2020 (50% scenario)

## **EC project with BIO Intelligence Service:**

- 1. EU households better off 23 euro per capita per year
- 2. EU land use savings

Vegetables and fruits: 15% of land use saved (high waste percentage)

Dairy: 17%, red & white meat: 17% (strong links with live animal and feed sectors)

**3. Economy: some gain some lose** Resources *move out* of agri-food sectors into manufacturing and services

• EU agri-food production fall by 4.4% compared to what was projected in 2020

## 4. Small but positive impacts on food security in SSA

=> better to focus on other policies (improved market access, investment climate)

## 5. Healthy diet scenario performs better

Triples land use savings, slightly better impact on food security SSA



# Impacts of reducing EU FLW on SSA

## FAO project focussing on price (transmission) effects

• 50% EU FLW reductions by 2020 in *all* segments of the food supply chain

## **Outcomes:**

- Market prices for primary producers decrease in EU (< 8%) and SSA (< 0.8%)</p>
- Transmission < 100% percent: trade taxes, transport costs, trade & consumption shares</p>
- Stages in EU food supply chain that matter most:
  - final consumption: a relatively high percentage of food is wasted
  - primary agricultural production: relatively large impact on rest of chain
- SSA on aggregate is worse off (negligible fraction of GDP):
  - producers as sellers to the EU lose out from lower food prices
  - producers as buyers of intermediate agri-food inputs from the EU benefit
  - consumers of food commodities from the EU benefit.



# Impacts of reducing food losses in Ghana

Project for NL Min. of Economic Affairs on 50% food loss reductions in **the chain** (paddy, maize, veg, fruits & nuts, oil seeds, fish) **by 2025** 

- producers gain from lower unit costs and increased production
- consumers gain from lower food prices, wage labourers may lose income ۲



Calorie Intake Welfare Gross Domestic Product +19USD per capita +29KCal per capita



+0.8%

Broadly speaking...

## Kind of Analysis possible: Economic, Environmental and Health impacts

## Kind of Results:

- Consumers often gain from lower prices, may loose from lower incomes (wage labour)
- Producers gain from increased sales but lose due to lower prices
- Impacts vary over agents (producers v/s consumers) and sectors (economy wide links through factor markets)
- Impacts are often localized
- For the economy as a whole the impacts are not often very big... Ag-food is small share of economies
  - Hypothesis: Impacts may be more discernible for certain population
    groups

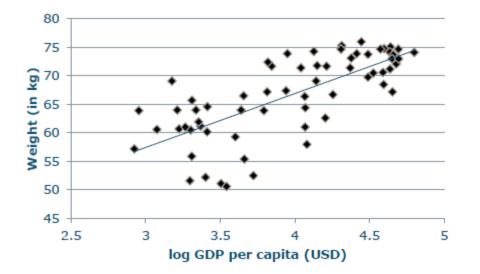
# Issues that need addressing

### Modelling FLW as resultant of food system

- Overstate benefits (not accounting for cost, reducing FW doesn't come free), Understate benefit (not accounting for recycle waste stream): Net?
- From "what if" target reductions to modelling FLW as endogenous activities in food system
- Model impacts of policies or other measures to reduce FLW (e.g. taxes, subsidies)

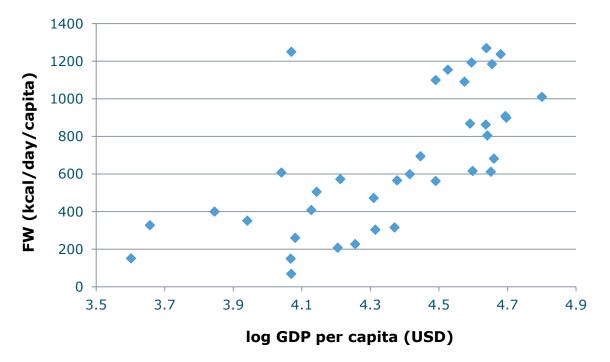
## Household level detail

- Household decomposition (certain population groups are more vulnerable)
- Account for factors affecting loss: role of food prices, income




# Ongoing work...

Data (the Revealed Preference analogue)


Food Intake = Energy Expenditure Energy Expenditure = Physical Activity Level \* BMR BMR = 12.36825 Body Weight + 724.4

Hall et al. 2009. PLoS One





- Food Waste = Food Available Food Intake
- Graph on relationship between wasted calories and income



Marginal propensity to Waste, to correct for food consumption



- Capturing intra country distribution: households within a country...
  - Could use calorie intake distribution around average per capita
  - use aggregation properties of demand functions
- All this on consumer waste...
- What about supply side of waste?
  - Use existing approaches (Irfanoglu et al. 2014: cost of reducing waste; Britz et al. 2014, Adrian Leip: waste stream)
  - Find collaborators



# SUStainable Food And Nutrition Security: Current Ongoing Project

- micro-level modelling of nutrient intakes, habitual dietary patterns and preferences of individual consumers
- macro-level modelling of food demand and supply in the context of economic, environmental and demographic changes on various time-scales (short to long term) and for multiple regions in and beyond EU
- Micro-macro linkages, Integrated assessment



Achterbosch 2015. GFS Conference Ithaca.

# Thank you!



Martine Rutten <u>martine.rutten@wur.nl</u>

> Linda de Vreede linda.devreede@wur.nl





Thom Achterbosch thom.achterbosch@wur.nl



- monika.verma@wur.nl

